Determining residue-base interactions between AraC protein and araI DNA.
نویسندگان
چکیده
Depurination/depyrimidation binding-interference experiments (missing contact probing) identified specific candidate residue-base interactions lost by mutants of Escherichia coli L-arabinose operon regulatory protein, AraC, to one of its binding sites, araI. These candidates were then checked more rigorously by comparing the affinities of wild-type and alanine-substituted AraC protein to variants of araI with alterations in the candidate contacted positions. Residues 208 and 212 apparently contact DNA and support, but do not prove the existence of a helix-turn-helix structure in this region of AraC protein whereas contacts by mutants with alterations at positions 256, 257 and 261 which are within another potential helix-turn-helix region do not support the existence of such a structure there. The missing contacts displayed by three AraC mutants are found within two major groove regions of the DNA and are spaced 21 base-pairs apart in a pattern indicating a direct repeat orientation for the subunits of AraC.
منابع مشابه
A dimer of AraC protein contacts three adjacent major groove regions of the araI DNA site.
Contact sites of AraC protein to the regulatory site araI of the Escherichia coli araBAD operon have been determined by the chemical-interference technique. DNA fragments were chemically modified an average of once per molecule, and fragments that no longer bound AraC were separated by gel electrophoresis from the DNA fragments still able to bind the protein. The contact sites were then determi...
متن کاملAraC-DNA looping: orientation and distance-dependent loop breaking by the cyclic AMP receptor protein.
The arabinose operon promoter, pBAD, is negatively regulated in the absence of arabinose by AraC protein, which forms a DNA loop by binding to two sites separated by 210 base-pairs, araO2 and araI1. pBAD is also positively regulated by AraC-arabinose and the cyclic AMP receptor protein, CRP. We provide evidence that CRP breaks the araO2-araI1 repression loop in vitro. The ability of CRP to brea...
متن کاملThe role of rigidity in DNA looping-unlooping by AraC.
We applied two experiments useful in the study of ligand-regulated DNA binding proteins to AraC, the dimeric regulator of the Escherichia coli l-arabinose operon. In the absence of arabinose, AraC prefers to loop DNA by binding to two half-sites that are separated by 210 base pairs, and in the presence of arabinose it prefers to bind to adjacently located half-sites. The basis for this ligand-r...
متن کاملA DNA-assisted binding assay for weak protein-protein interactions.
We describe a new method used for quantitating weak interactions between proteins in which the weak interaction is "assisted" by a known DNA-DNA interaction. Oligonucleotides, which are conjugated to proteins of interest, contain short complementary DNA sequences that provide additional binding energy for protein-protein interactions. A stretch of unpaired bases links the protein to the hybridi...
متن کاملEquilibrium DNA-binding of AraC protein. Compensation for displaced ions.
Experiments on the AraC regulatory protein of Escherichia coli suggest a mechanism that DNA-binding proteins can use to reduce potentially drastic alterations in their affinity for DNA resulting from changes in salt concentration. Measurement of the net number of ions apparently displaced as AraC protein binds DNA and of fluorescence changes in the protein lead to the following picture. About 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 209 4 شماره
صفحات -
تاریخ انتشار 1989